

University of Pretoria Yearbook 2022

Computational fluid dynamics 411 (MKM 411)

Oualification Undergraduate **Faculty** Faculty of Engineering, Built Environment and Information Technology Module credits 16.00 **NOF Level** 08 BEng (Mechanical Engineering) **Programmes** BEng (Mechanical Engineering) ENGAGE **Prerequisites** (MTV 310), (MKM 321) **Contact time** 1 practical per week, 3 lectures per week Language of tuition Module is presented in English **Department** Mechanical and Aeronautical Engineering

Period of presentation Semester 1

Module content

A fast review of partial differential equations, introduction to continuum mechanics, continuity equation, momentum equation, Navier- Stokes equation, energy equation, boundary conditions in thermal fluid systems, finite difference method, linear and non-linear partial differential equations, introduction to finite volume method (FVM), FVM for diffusion problems, FVM for convection-diffusion problems, introduction to pressure-velocity coupling in FVM, SIMPLE algorithm, introduction to computational fluid dynamics (CFD) software packages and their abilities, using CFD commercial software packages to solve thermal-fluid engineering problems.

The regulations and rules for the degrees published here are subject to change and may be amended after the publication of this information.

The General Academic Regulations (G Regulations) and General Student Rules apply to all faculties and registered students of the University, as well as all prospective students who have accepted an offer of a place at the University of Pretoria. On registering for a programme, the student bears the responsibility of ensuring that they familiarise themselves with the General Academic Regulations applicable to their registration, as well as the relevant faculty-specific and programme-specific regulations and information as stipulated in the relevant yearbook. Ignorance concerning these regulations will not be accepted as an excuse for any transgression, or basis for an exception to any of the aforementioned regulations.